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It's the 2 of January 2017 at
15:48 (GMT), Goodison Park

Ref. Kevin Friend signals for

halftime of Match Game 20
between Everton FC &
Southampton FC.

Halftime result - Goalless draw



Everton = & Shampton Everton = & Shampton
@ Goals D saved @ Offtarget @ Blocked @ Wood Work @ completed ‘@ Failed & Key passes @ Assist

Figure: Shots per team Figure: Crosses per team
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Everton =3 & Shampton Everton —» & S'hampton
(V] Successful o Failed V] Successful o Failed o Fouled

Figure: Dribbles per team Figure: Tackles per team
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Match day - Halftime Analysis (3)

Everton S'hampton

Everton T 4 shampton
V] Completed Q Failed V] Key passes o Assist

Figure: Passes per team
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How do you think is the match
going to end?. -

Match result market at halftime;
Everton to win, odds at 2.86
(0.35). S’Thampton-to win, odds at
4.00 (0.25); Ends iny draw, odds -
at 2.50 (0. 40) ;



O votaion

¢ Rise in popularity of betting exchanges through the
Internet

e Prediction Markets, have been found to be accurate

» Sports data is recently being captured at precise and
granular levels than ever before
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@ Why Machine Learning?

¢ Multitude of complex variables associated with a football
match

¢ Difficult for humans to think in terms of probability and to
react to market changes

¢ Emotions might hinder the performance of humans to
make rational decisions
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@ Aims and Objectives

¢ Predict the fulltime result (H/D/A) of matches drawn at
halftime using in-play match data

¢ Investigate whether using Feature Selection (FS) by a
Genetic Algorithm (GA) process would remove certain
predictors and increase classification accuracy

o Test if the addition of pre-match data to the in-play game
statistics would improve accuracy rate

¢ Compare the probabilistic classification of the classifier
with that of the implied probability from the betting
exchange market
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* No publicly accessible datasets available

» No previously conducted studies using same data to
compare with

* Most similar study was carried out using a Case Based
Reasoning approach on the over/under 2.5 goals market
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Dissertation Schematic
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Halftime /Fulltime Result Base Rule

Data was retrieved from Fooball-Data

We investigated the transition probability of the halftime
result to that of the fulltime result of each match

Consists of 77,553 match instances spanning several major
and minor leagues across Europe over multiple seasons

We found that for a high percentage of matches the
fulltime result remained the same as that of the halftime

Base rule

Bthr(Rhtr) = Rtr 1)
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O ey

e Football-Data data was not granular enough for the study

¢ Data was parsed from Whoscored website and had to be
engineered using conditional rules
¢ Main benefits why this site was chosen:
@ Data recorded at a play-by-play rate
@ Actions are labeled with a type, the x and y coordinates of
the ball
® Opta as the source
@ Continually being updated with data of major European
competitions. Most importantly, English Premier League,
Italian Serie A, Spanish La Liga, French Ligue and the
German Bundesliga from 2009 /10 to present
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Feature Engineering of In-play Predictors

Dataset URL: https:/ /bit.ly /2QdICs6

» CORNER_FAVOUR
 FOUL_RECEIVED

» CROSS_FAV_TOTAL

» CROSS_FAV_SUCCESS
» OFFSIDE_COMMITTED
» POSSESSION_TOTAL

o POSSESSION_ATT

» POSSESSION_DEF

o INTERCEPTION
 CARD_YELLOW/RED
o TACKLE_TOT/SUCCESS

o DRIBBLE_TOT/SUCCESS
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+ SHOT_TOTAL

« SHOT_ON_GOAL

o ASSIST_SHOT

o ASSIST_INTENT’L

o ASSIST_INTENT'L_GOAL
» PASS_TOTAL/SUCCESS
* PASS_LONG

* PASS_FORW/BACK

o PASS_TRGT_FINAL_TRD
e PASS_TRGT_MID_TRD

o PASS_TRGT_DEF_TRD




%} Feature and Target Vector

e The feature vector constitutes of the difference in the
halftime statistics between the home and away team

» A positive value for a particular feature means that the
home team had accumulated more of that statistic till the
halftime than the away team

o The target vector consists of only one element for each
feature vector. The value could be from the set {0,1,2},
where the elements represents home, draw and away win
respectively
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match Target (FTR) | ShotTotalDiff_ShotORGoalDH _passToralDii_passLongDift DI TRirdDiff ackIeS i dribbleToralDifT
Arsenal v Aston Vila 2 7 7 115 0 = o Bl ) 5
Arsenal v Cardif 0 5 1 132 4 138 % 5 8
Arsenal v Chels 1 4 3 5 4 6 I3 5 1
Arsenal v Crystal Palace 0 4 2 207 2 302 120 3 ©
Arsenal v Everlor 1 2 1 a2 20 a3 9 5 4
Arsenal v Fulham 0 7 3 2 19 5 12 1 3
rsenal v Hull 0 1 5 22 20 23 86 7 4+ 8
Arsenal v Liverpool 0 2 0 18 1 102 58 2 10
Arsenal v Man City 1 - 3 50 0 75 a7 3 Bt
Arsenal v Man Utd 1 6 1 £ 1 27 1 6 4
Arsenal v Newaastle 0 8 5 130 El 133 3 A 3
Arsenal v Norwicl 0 3 0 2 K 7 16 5 4
Arsenal v Southampton 0 1 2 7 E) 8 4 E -
Arsenal v Stoke 0 7 4 179 9 184 9 7 2
Ars 0 9 5 280 0 279 131 B 4 9
1 7 4 105 4 110 52 K 7 7
0 3 2 27 En -0 a8 2 5 5
0 1 1 182 15 176 &7 0 1 E
Arsenal v West Ham 0 1 2 147 2 146 55 © 4 2
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E} Manual Feature Selection Experiments

¢ Instances from the English 2015/16 season were used as a
sample for initial experimentation

« Features were iteratively being added to the feature space
depending on the accuracy and based on our football
intuition

¢ Machine Learning Algorithms used; Neural Nets (NN),
Naive Bayes (NB), Decision Tree (DT), Random Forest (RF)

¢ Dataset was normalized for algorithms which trained
faster and perform better with scaled data

» Random Forest was found to be consistently accurate
across all the tests
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@ Automated Feature Selection using GA

¢ Using only the Random Forest algorithm with custom GA
separately for each league

¢ Investigate classification performance and predictors
chosen with default parameter settings and with model
tuning

Nested Cross Validation (CV)

Grid search used for parameter tuning

Fitness function promotes fewer predictors

Growth function for mutation rate

Stopping criteria: score of latest generation subtracted by

the mean of the scores from the previous ten generations

greater than a threshold (0.1)
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Genetic Algorithm - Feature selection

Chromosomes
Parent,

| O O 00 _
e . 00 @

Parenty,

Random cutoff,

Cross-Over :

Switch ends
from cutoff point

Mutati
utation Child, . @ . M, .
Randomly select
Child, . . . . @ genes for mutations

Child,,
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Genetic Algorithm - Mutation Threshold

Mutation Threshold

10 -

2i 2
mt = tanh (n) (2) -

Where i is the current
epoch and 7 is the
maximum number of ———— | —

0 25 50 75 100 125 150 175 200
epochs. Epoch

m

Mutation treshold
.

]
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@ Nested CV with Parameter Tuning

Outer folds
T [ [
v P
X Vi1 Xa,1 Vo
v P
X V Xz Vaa
, [ [
i ] ]
v Pa
X v Xz Va1
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Evaluation of Classifiers

Accuracy

Accuracy = TP +TN
Y= TP+ IN+EP+EN

®)

TP - True Positive
TN - True Negative
FP - False Positive
FN - False Negative
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Pre-match data

Prematch data added to contextualise the instances
Prematch feature set includes simple attributes:
» Goals Scored
* Goals Conceded
e Points
and computed ones
¢ Team Form based on the teams’ latest performances
¢ Attacking Strength
¢ Defensive Strength
Inner partitioning loop customised to train/test on a
seasonal basis because of temporal data

Same as with in-play data, the feature vector consisted of
the difference between the home and away team
pre-match statistics
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Pre-match Features - Att & Def Strength

Attack Strength
where, t denotes
the team for which L
the strength is n 2 Sit
being calculated, AttackStr(t,n,m) = —=1—— (4)
represents the % > 2. Sij
match game and m S
describes the total
number of teams. Defence Strength
S and C represent
the goals scored | L
and goals n z Cir
conceded matrices, DefenceStr(t, n,m) = % ®)
respectively. o Zl Zl Cjj

j=1i=
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Pre-match Features - Form

Form
Form decay function
B 5 1 ‘
o 08 > (2)'(Yj-it)
B e Form(t,j) = =2 = (6)
>(G)
i=0

0.0- 0 i 1 '
1 2 3 4
match games from current

Importance is given to the result of the previous games
depending on how recent they have been played by assigning
them different weights.
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@ Pre-match Form - Examples

FC Barcelona 2015/16 - form Vs points (FTR) Aston Villa 2015/16 - form Vs points (FTR)
10- 10 - .
ssssssssnnen -16
-80
08 - 08 - -1
- B0 -12
06- 06 - =
E w o E 10 @
E E & &
04 - -40 04
-8
0z 20 02 -6
. — — -4
0o FORM » 00 FORM
0 5 0 5 1 5 B SR 0 5 10 5 05 E
MATCHGAME MATCHGAME
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@ Custom Inner Loop for Prematch data

Split
Data Set | | 2 3 4
2011/12 | #;

ta
2012/13 | o1 ts

ty

2013/14 Vs
2014/15 vs
2015/16 V4
Score | S1 Sy S3 Si| S
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Evalutation of Probability Outcomes

Brier Score Function

n r

% D (pi—oy)? 7)

i=1 j=1

Where, 1 is the total number of instances and r is the number of
possible outcomes (three is our case).

pij is the probability of the j" outcome for the i instance from
the model. For example, when i = 1 the probability vector is
[0.7,0.2,0.1].

0;j is the actual probability of the j" outcome for the i’ instance
after its occurrence. For example, for the same instancei =1,
the actual result was [1.0, 0.0, 0.0].
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Base Rule Matrices Results

All Leagues (2006-2016) Major Five Leagues (2010-2016)
Base Rule Results Base Rule Results

0.206

H [} A
FTR

HTR - Halftime Result, FTR - Fulltime Result.

A darker color represents a lower value.
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BR Matrices Results by Goal Difference (1)

Half Time - Goal Difference (1) Half Time - Goal Difference (2)

13847(0.73) 3655(0.19) 1370(0.07) 5338(0.93) 329(0.06) 103(0.02)

0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00) 0(0.00)

1829(0.13) 139(0.04) 340(0.10)
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EE} BR Matrices Results by Goal Difference (2)

Half Time - Goal Difference (3)

1253(0.99) 16(0.01) 2(0.00)

0(0.00) 0(0.00) 0(0.00)

2(0.00) 15(0.03)
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Half Time - Goal Difference (4)

233(1.00) 0(0.00) 0(0.00)

0(0.00) 0(0.00) 0(0.00)

0{0.00)
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@ Time Series Results

. Time series split results (England) o Time series split results (Spain)
— random_forest — random_forest
08 - = base_rule 08 - = base_rule
- =
goe- g os
for ><T——— goa
- —
ks 2
0z- 02
00 - 0.0
100p - ™= training 1000 - ™ training
i - B testing o . testing
= oo - ‘o BOO -
E £
’ 00 - 3 600-
g g
c 400 - ‘£ 400 -
B e
= 200 . = 200- .
- ~ - - n © - - ~ m o n o ~
Season Season

One tailed paired t-test showed that the accuracy of the time
series random forest was not significantly different from that of

the base-rule with t-statistic of 1.33 and p-value of 0.19.
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possessionTotalDiff < 26.5

mples = 3253
= [1954, 1903, 1336]
class =

passTargetMiddleThirdDiff < -105.5
entropy = 1.579

samples = 1830
value = [931, 1115, 911] o [1023, 788, 425)
class =D class = H

P passSuccessDiff s -121.5 passTarge(Mldd\eThule“ <700 shmuneoalom 5
=1 578 entropy = 1.35¢
vaﬁ‘:‘fl[gss_;ga%g] samples = 1697 sampl Ies 969 samples = 4
i value = [893, 1036, 822] value = 606, 620, 315] value = [417, 168, 110]
= class =D class =D class=H
T passTargetFinalThirdDiff < 51.5 assistShotDiff < 5.5 emmpy e pr—r pr——T

en(rop

s =71 samples = 175

samples = 148 sar Pl samples =
value [22 46,47] | | value =[139, 86, 38] | | value =[278, 82, 72]
-A class = H class =H

"a'“e [5“ j15458] valua e [339 921 734] valvo e [554 574 268]

Diff s-13.5
emropy =1 58
samy

shotOnGoalDiff < -2.5
enno =T 522
say

entropy = 1.16 entropy = 1.287

samples = 99
value = [457 523 253] "“'“Bc;gj‘"s]

class =D

value = [755 aga 730]
class =D
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Leagues RFuT4PM RFgar) RFga RFrs  RFjocy BR
English Premier League 0.482 0471 (£.041) 0440 (£.034) 0403 (£.028) 0390 0.379 (£.052)
Italian Serie A 0.485 0.442 (+.051) 0.426 (+.039) 0.404 (+.035) 0372  0.392 (+.018)
Spanish La Liga 0438 0.462 (+.038) 0455 (+£031) 0.375(+.035) 0418  0.356 (+.013)
German Bundesliga 0.449 0.415(+.037) 0433 (+.047) 0.357(+.043) 0372  0.346 (+.053)
French Ligue 1 0.458 0438 (£.036) 0435 (+£.040) 0.384 (£.046) 0392  0.388 (+.037)
Mean 0.461 (+0.020) 0.450 (+.016) 0.438 (£.011) 0.384 (£0.040)  0.389 0.371 (+0.041)
All leagues - 0.434 (+.027) 0.407 (£+.015) - - -

e BR - Base Rule

e RFjgcy - Random Forest 10-fold Cross Validation

e RFrs - Random Forest Time Series

¢ RFg4 - Default Random Forest with Genetic Algorithm

* RFga(r) - Random Forest with Genetic Algorithm & Tuned

¢ RFyr4pm - Random Forest & Genetic Algorithm with
In-play & Pre-match Data
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Brier Score for the PM was 0.544 and for the RF was 0.623.

Match Prediction Home Draw Away Match Prediction Home Draw Away
Actual 1 0 0 Actual 1 0 0
AC Milan vs Cagliari | Random Forest 045 038 017 Napoli vs Pescara Random Forest 056 028 0.16
BetFair 0.61 0.29 0.09 BetFair 0.75 0.21 0.04
Actual 1 0 0 Actual 0 0 1
Crotone vs Empoli Random Forest 039 042 019 Palermo vs Inter Random Forest 019 041 040
BetFair 034 041 024 BetFair 012 033  0.56
Actual 1 0 0 Actual 1 0 0
Empoli vs Udinese Random Forest 026 043 030 Roma vs Cagliari Random Forest 048 036 0.6
BetFair 028 043 029 BetFair 072 021 0.6
Actual 0 0 1 Actual 0 1 0
Lazio vs Chievo Random Forest 054 030 016 Sampdoria vs Empoli | Random Forest 038 040 022
BetFair 062 030 008 BetFair 046 036 018
Actual 1 0 0 Actual 0 1 0
Lazio vs Crotone Random Forest 0.60 024 0.16 Sassuolo vs Torino Random Forest 026 039 0.34
BetFair 0.68 0.25 0.06 BetFair 0.23 0.36 0.40
Actual 1 0 0 Actual 1 0 0
Napoli vs Pescara Random Forest 056 028  0.16 Udinese vs AC Milan | Random Forest 032 040 027
BetFair 075 021 0.04 BetFair 027  0.40 0.33
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@ Comparision with Betting Exchange (Eng)

Brier Score for the PM was 0.622 and for the RF, 0.655.

Match Prediction Home Draw Away
Actual 1 0 0

Arsenal vs Burnley Random Forest 070 017 013
BetFair 0.70 0.22 0.07

Burnley vs Actual 1 0 0
Southampton Randﬁ)m Forest 0.14 0.38 0.48
BetFair 0.16 0.41 0.44

Actual 1 0 0

Hull vs Bournemouth | Random Forest 035 0.26 0.39
BetFair 029  0.38 0.32

Actual 0 0 1

Liverpool vs Swansea | Random Forest 071 014 015
BetFair 0.66 0.28 0.07

Actual 1 0 0

Man City vs Burnley | Random Forest 055 031 014
BetFair 0.53 0.33 0.14

. Actual 0 1 0
ﬁz‘efﬁgs Random Forest | 052 022 026
BetFair 0.46 0.34 0.20

Actual 0 1 0

va?ég)lre dsljrsough Rand(?m Forest 040 032 0.27
BetFair 0.31 0.46 0.23

Actual 0 0 1

West Ham vs Man Utd | Random Forest 0.29 0.36 0.35
BetFair 0.06 023 0.71
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Everton won the match by three
goals to nil.

Actual 1 0 0
Random Forest|0.59 0.28 0.13
BetFair 0.35 0.40 0.25

Everton vs
Southampton




&

Conclusion

We have derived a base rule for predicting fulltime results
at the halftime interval of football matches

Parsed in-play data from an Opta source and developed a
dataset consisting of the differences between team statistics
till the halftime for both pre-match and match day data

Shown that random forest using both types of available
data produced the best results

Similar accuracy as the betting market when considering
probabilities for predictions, in some cases out-performing
the market and thus giving an edge to the user
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CgFoevos

¢ Addition of other predictors such as inclusion of key
players in team, player individual form and their scoring
and defensive abilities

» Rate or number of entrances into opposition penalty box
and dangerous areas

¢ Split match data into several minute time-frames and
investigate predictions along the time of play

¢ Investigate predictions on other markets such as
over/under goals and next team to score

» Use predictions as part of a betting strategy
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Thank you for your
attention
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