Matchmood

Real-time comparison of betting markets and aggregate mood through sentiment
analysis of social media.

Sean Bugeja
Department of Atrtificial Intelligence
University Of Malta
Msida, Malta
sean.bugeja.12@um.edu.mt

ABSTRACT

The following paper shall present a system designed to mon-
itor and extract sentiment information from twitter data
streams related to sporting events. The system also tracks
market information from betting companies in order to ob-
serve a plausible correlation between the sentiment analysis
information from tweets and the reaction of the sports bet-
ting market. We obtained preliminary results from each data
source and have visualised the sentiment reaction to specific
points of interests during sporting events.

CCS Concepts

eInformation systems — MapReduce languages; Sen-
timent analysis; Column based storage;

Keywords
MapReduce, Sentiment Analysis

1. INTRODUCTION

The astounding growth of social-media and micro-blogging
platforms cannot be understated. These platforms have seen
an exponential rise in their user-base year over year and, as
such, has made them bountiful sources of information. The
general public constantly use these platforms to share their
opinion on anything and everything, and this has lead to a
rise in the interest of mining this information effectively to
obtain a detailed analysis of the general public opinion, or
mood, with respect to a specific topic.

A similar statement could be made of the various betting
platforms available on-line, which have experienced a con-
stant growth in their popularity ever since the start of or-
ganised sports, taking over markets for other events such as
elections and music competitions.

Highly available electronic markets and the advancements in
Internet technology in recent years have contributed to the
success and popularity of such platforms. One such platform
which distinguishes itself from the rest is Betfair'. Betfair is
not the typical bookmaker, where the odds set are driven by
the profit needed for a betting company to keep operational
and generate capital. Betfair is a sports exchange where it
allows its users to trade bets on particular outcomes for a
number of sporting events. Apart from backing outcomes to

! Accessible through http://www.betfair.com

Matthew Joseph Zammit
Department of Artificial Intelligence
University Of Malta
Msida, Malta
matthew.zammit.09@um.edu.mt

happen by betting on them, users can also lay events by tak-
ing on liability to pay the backers should the outcome they
laid occurs. On such a platform, Betfair is a mere middle
man facilitating the matching of opposite bets at the same
prices. Meaning that the users themselves are the market
makers by setting their own odds on their own terms, speci-
fying their own return ratio based on their perception of an
event occurring or not. Betfair then exposes an overall mar-
ket value for an event based on these wagers, which should
theoretically be representative of the users’ belief (or mood)
towards that event. Such an exchange system is called a
prediction market and thus can be used to forecast the out-
comes of upcoming events.

Herein lies the problem that this system is meant to tackle.
The proposed system shall be tasked with the gathering,
organisation, and sub-sequent cross-correlation of market
value data and twitter? sentiment data for a specific event,
obtained through both of the respective entities’” API. Fi-
nally, the system shall present a graphical representation of
the information obtained in an effort to better visualise the
relationship, if any, of the two data sources.

The following paper is divided as follows, Section 2 shall
present a brief overview of the state of the art within the
fields related to this task as it pertains to this specific do-
main. Section 3 presents a thorough explanation of the
methodology adopted throughout each module within the
system as a whole. Section 4 lists the evaluation techniques
used, as well as the results obtained from this evaluation.
Finally, section 5 concludes with a brief summary of the
work presented herein while also exploring possible future
improvements to the system.

2. STATE OF THE ART

The process of sentiment analysis is a growing field within
the scope of natural language processing with the over-arching
goal of identifying the public mood or opinion on specific
topic from textual data. This field has experiences a par-
ticular rise in popularity in recent years due to the boom of
social-media[l] and the opportunities that this presents.

In carrying out sentiment analysis, two common approaches
that are adopted are those based on lexicon resources and
those based on some machine-learning algorithm. In the for-
mer, a lexicon dictionary is used, such as the NRC[4], which
relates a set of commonly used words to negative, positive or

2A popular micro-blogging platform, accessible through
http://www.twitter.com

neutral sentiments, as well as other emotions such as anger
and joy. Each word within a piece of text is then cross refer-
ences with this dictionary and values are obtained pertaining
to each sentiment for a specific piece of text.

With the rise of social-media and micro-blogging platforms
such as twitter, the amount of data that must be analysed
has increased substantially and this has required the devel-
opment of more sophisticated and distributed data storage
systems which can cope with this amount of data.

Once such data store is the Apache Cassandra [3], which is
a column-based data store. This different approach makes
allows for astoundingly fast read and write speeds while also
making it ideal for many time-series data, such as a stream
of tweets.

The MapReduce programming model[2] presents itself as a
powerful tool when used together with large data-stores such
as Cassandra[3]. This model aims facilitate the use of paral-
lel systems, with optimal performance, by reducing network
bandwidth overhead within a cluster while also providing
fault-tolerance across computations, all while abstracting
the intricate details of the parallelization. The model allows
for easily implementing parallel functions that can aggregate
attributes across large data-stores grouped by some partic-
ular key.

Furthermore, the Apache Spark[6] program is one that builds
on top of this MapReduce model while at the same time
allowing operations such as joins to occur on data-stores
such as Cassandra[3], which would otherwise be impossible.
A spark cluster comprises of a master node which sends jobs
to the respective slave nodes within the cluster, then finally
produces the result of it’s job carried out across the entire
data-store.

All of these tools make the process of handling the ever-
growing amounts of data present in various fields, such as
social media, more effective and efficient. The work pre-
sented in this paper is loosely based on similar work carried
out by [5] who tracked the sentiment of American sports fans
during the soccer world cup. We build on top of this work
by further collecting betting market data and examining the
correlation between the two.

3. METHODOLOGY

The following section shall detail the methodology adop-
ted throughout the design phase of the system, leading up
to its evaluation, which shall be covered in the sub-sequent
section. This section will provide a comprehensive report on
the design choices made when building the system architec-
ture, outline all problems encountered during this process as
well as the sub-sequent alterations made to the system in an
effort to overcome these problems and illustrate the connec-
tion of each design choice with the respective goal it aims
to achieve. This information is organised in sections, each
representing the distinct, principle, phases of the system’s
design.

3.1 Stream Interface

The initial step in designing the system was to interface
it with the relevant APIs provided by Twitter and Betfair.
For the purposes of the system, a constant stream of data
is required from both sources so as to enable to continuous
correlation between the two. For such a task, twitter pro-
vides a dedicated streaming API which provides a constant
stream of live tweets, which can be further filtered through

a specified filter string. Naturally, since twitter is a general
social media platform, it contains no knowledge, or means
of acquiring knowledge, about current sporting events. This
information would have to be extracted from the Betfair
data source.

This process would proceed as follows: initially, the system
is provided with a specific competition to follow, such as the
‘Barclay’s Premier League’, the system subsequently queries
the Betfair API for current events taking place within this
competition which contain the three primary event outcomes
of any sporting match, namely: a win for the home team,
a win for the away team or the game ties. Using this ap-
proach the system obtains a list of all current events for
which a market is currently open. A particular complica-
tion encountered at this point is that for many events in-
volving the same teams, the respective markets for games
involving those teams would be open simultaneously. So as
to overcome this, a further limitation is set at this point
to limit the number of events extracted from a competition
to a two-day time-frame. Otherwise, tweets directed at a
particular event may be incorrectly set to the wrong match
tag by the system. So apart from the constraints set in the
twitter stream listener; to be discussed in the next sub sec-
tion, the assumption that users will be tweeting about the
most recent events is made. From the resultant events, the
system is able to extract the team names as well as a unique
identifier used by Betfair for each particular team.

From this information the system must construct the respec-
tive filter that would only allow tweets relevant to particular
matches of interest. An automated system would be possible
for such a task, given the official team names provided by
the Betfair API, however this proves to be far more com-
plex than one might think due to the diverse approaches
different leagues take towards structuring their presence on
social media. This, coupled with frequent, small yet break-
ing, inconsistencies between the official team name provided
by Betfair and those used on twitter, led to the decision of
manually building a dictionary of teams, each identified by
its unique Betfair ID, and containing the teams’ respective
twitter handles (eg. @ChelseFC) and a three-letter abbrevia-
tion (eg. CFC) commonly used to identify a specific event by
concatenating this into a hashtag with the opposing team’s
own three-letter abbreviation. Other hashtags found on the
official twitter profiles of the chosen football clubs, such as
team nick names, other abbreviations than the tri-character
one, that refer to their team were also retrieved. This al-
lows for the system gather more data from the stream. Thus,
more information could be extracted from such tweets that
would otherwise not be retrieved, as users are not bound
to choose particular references to the same real world enti-
ties and thus may be inconsistent in the tags and handles
they choose to direct their message to. From the dictionary
built, the twitter steam can be effectively filtered for data
pertaining only to specific sporting events, and the teams
involved in those events, at the cost of having to manually
update this dictionary with the relevant information to in-
clude more teams from other competitions.

3.2 Data Pre-Processing

Before storing the acquired data, some pre-processing is
carried out to facilitate the extraction of information at later
stages of the system. This is particularly true for the twit-
ter stream which contains various artifacts common to social

media platforms. These artifacts would otherwise hinder the
sentiment analysis process and must therefore be dealt with
accordingly.

For each tweet, the following approach is adopted: first, the
tweet is checked for any reference of a team through their
twitter handle which it knows about; for each such mention,
the official name of the team is substituted. Subsequently,
the following artifacts are removed from each tweet: URLs,
RT markers, carriage returns, line feeds, and tabs, user men-
tions, hashtags not containing any letters and any words
containing symbols other than those appearing in the Latin
alphabet (with exceptions for punctuation marks). Essen-
tially the system aims to reduce all tweets to a series of
legible words within the English dictionary.

From this resultant sentence, the system extracts a value for
the sentiment (ranging from [-1,1]) and subjectivity (rang-
ing from [0,1]) through the use of the TextBlob library for
python. On top of this, all the words appearing within the
tweet are cross-referenced with the NRC-English sentiment
dictionary|[4], for their respective sentiment contribution to-
wards each of the following: Anger, Anticipation, Disgust,
Fear, Joy, Negative, Positive, Sadness, Surprise. The values
for each of these sentiments are accumulated within each
tweet and normalised by the number of words appearing in
the NRC Dictionary[4].

A setback encountered here was the particular encoding of
tweets, having the tweet encoded in anything but ASCII
was producing run-time exceptions, so as to mitigate this,
the tweets were encoded in ASCII, and any UTF charac-
ters were ignored. When dealing with English tweets, this
is not a serious problem, however utilising UTF would al-
low further sentiment analysis be carried out using Emojis,
which are increasingly popular on social media. For both
streams, the MatchTime is recorded, which is calculated as
the amount of minutes from the current time to the start of
the event (negative up until the start of the event).

3.3 Data Storage

Following the pre-processing phase, the data is stored in
column-based format using Apache Cassandra[3] across two
different tables, for the market values obtained from Betfair,
and tweet data obtained from Twitter, which are themselves
hosted on an Amazon Web Services (AWS) cluster compris-
ing of four nodes in total, with a shared hdfs, three of which
host the Cassandra[3] cluster (shown in figure 3). The clus-
ter was setup manually as the approach that best fit the
challenge at hand, required a very specific set of require-
ments to allow for the solution stack described above to be
setup accordingly. The Cassandra tables and the respective
attributes which are stored within them are illustrated in
figures 1 and 2 respectively.

Within these tables, the tag attribute is used as a pri-
mary partition key. This is imperative since the system
will most often be serving information related to a spe-
cific event which it identifies through this tag. Furthermore,
match_time is used as a clustering key since this is a primary
point of reference when carrying out all subsequent analy-
sis, the match_time represents the resolution of the system.
Finally, a time_uuid had to also be specified as a clustering
key, allowing for multiple entries to be stored for the same
match_time.

It is also important to note the entity attribute present in
the twitter data-store, which is a character representation

Primary Key
Partition Ordering
match_time time_uuid home draw away volume
match_time time_uuid home draw away volume
tag
match_time time_uuid home draw away volume
match_time time_uuid home draw away volume

Figure 1: Betfair Column Datastore

Primary Key

Partition Ordering

match_time time_uuid entity text anger | positive disgust

match_time time_uuid entity text anger positive disgust
tag

match_time time_uuid entity text anger positive disgust

match_time time_uuid entity text anger positive disgust

Figure 2: Twitter Column Datastore

of any user handle or hashtag within a tweet (prior to it
being processed); if a tweet contains multiple entities, then
it is stored once for each entity present.

3.4 Aggregation Techniques

The raw data stored within the aforementioned tables

serves as the first level of storage, with which an Apache
Spark[6] cluster interacts. This Spark[6] cluster is distribu-
ted across the four nodes, with three serving as slaves, while
the fourth (which also houses the system core) serves as the
master node, delegating the required Spark[6] jobs amongst
the slaves as necessary. The Spark[6] cluster (illustrated in
figure 4) allows the system to perform SQL type queries
which would otherwise be impossible to carry out on the
Cassandra[3] data-store by loading this data into its own
Resilient Distributed Data (RDD) object.
Furthermore, MapReduce jobs are implemented within the
Spark[6] jobs themselves (written in Scala) which allow for
the distributed aggregation of raw data to produce four new
Cassandra[3] tables containing the end-results. In total,
three distinct Spark[6] jobs are defined, the details of which
are covered hereunder.

3.4.1 Getting Distinct Match Tags

This is the simplest of the three jobs and serves the pur-
pose of obtaining all distinct match_tags for the day, essen-
tially providing a list of events which the system shall be or
is currently monitoring.

3.4.2 Performing Sentiment Analysis

The second job handles the aggregation of data found
within the twitter data-store, and outputs the result to two
separate tables. The tables themselves are similar in all re-
gards but one, namely the match_time. This allows for one
table to provide information pertaining to the sentiment at a
specific match_time, while the other to provide overall sen-
timent values as an average from when the event started
being tracked. For the former, values for each sentiment are

Twitter data
Market data Matchmood
|
Matchmood |— Client Connection Spark Master |— Spark jobs —] Spark Slave Spark Slave
C: Cassandra |eeeeee.
Spark Master Spark Slave Spark Slave IEIAETHERES H H
hdfs datanode 1 hdfs datanode 2
hdfs namenode I Cassandra f--eeeeeeeees Cassandra [+ " atanode atanode
hdfs datanode 1 hdfs datanode 2 Gossip: (iassandra
Communication
: Spark Slave H
Gossip: Cassandra H :
Communication | PPN Cassandra freeeeeeesseeeeesssnsnnnnnnnn 3
Spark Slave :
H hdfs datanode 3
ereeeerene e C:

hdfs datanode 3

Figure 3: Cassandra Cluster Setup

aggregated as is, grouped by the specific match_time, while
the latter aggregates all sentiment values for the event, then
normalises this value by the amount of tweets thus far. In
both cases the results are aggregated by the match_tag and
subsequently the entity.

3.4.3 Performing Market Analysis

Finally, the third job is in charge of aggregating the raw
market data. For the purpose of extracting multiple metrics
from the home and away market values (the draw value is
dropped at this time and is only stored for future improve-
ment possibilities), these values are mapped three times
over. This enables the Spark[6] job to extract the min, maz
and avg (by also aggregating a count value) values for both
in a single run. These are joined with an ordered RDD with
the same keys to ensure that all values are chronological. Fi-
nally from this data, the minimum, maximum, average and
volume difference is extracted and stored by match_tag, se-
lection_type (Home or Away) and match_time.

3.4.4 Spark Job Parameters

The aforementioned Spark[6] jobs are all executed against
a string parameter which can be one of the following:

e ‘day’ : Instructs the Spark[6] head to execute the daily
task, namely collecting all new match tags to follow.

e ‘latest’ : Carries out the sentiment analysis and market
analysis tasks in near real time by extracting and cal-
culating the required information from the past minute
by the use of the time_stamp attribute.

e ‘rebuild’: Isimplemented primarily for debugging pur-
poses to allow the recycling of old data which does not
necessarily conform to the structure chosen for the final
version of the system and allows for a batch process-
ing approach making use of the match_time attribute
stored with insert, instead of the time_stamp used for
the near real time analysis.

3.5 Data Presentation

The final layer of the system is that which consumes the
data provided through the aforementioned Spark[6] jobs,
and illustrates it in a suitable format for the end user. This
layer comprises of two primary modules, namely, a RESTful
API and a graphical front-end which presents this informa-
tion to the end user. A brief overview of these modules is
provided herein.

Figure 4: Spark Cluster Setup

3.5.1 RESTful API

A RESTful API shall be developed for the system us-
ing the Flask Python module, which exposes five endpoints
which read from the end-result Cassandra[3] tables constant-
ly being updated by the relevant Spark|[6] jobs. A brief sum-
mary of the endpoints provided by the API is provided in
table 1. All endpoints expose GET http methods, and return
data in JSON format.

4. EVALUATION

In this section, the data collection process used for build-
ing and evaluating the data set is described in detail. Fur-
ther more, results and conclusions obtained during the eval-
uation period are then discussed at length and shown in the
form of charts obtained from the Graphical User Interface
of the built system.

4.1 Data Collection

The Data collection process for the building and evalu-
ation of the MatchMood project was an ongoing process.
One of the main reasons this approach was taken was be-
cause there was no already defined data set that could be
used. Thus, the data set was constructed in parallel with
the development of the system. This kind of data collection
process had its to challenges and obstacles. One of the main
challenges encountered was that the critical information of
a soccer like most other sporting events is played out mo-
ments before and through the duration of the event, which
are both sparse and of a very short time slot of around 120
minutes. This meant that at any particular time the critical
data was to be collected the current version of the system
had to be functioning properly without any bugs that could
hinder the process, which was not always the case. During
this process the system was continuously being improved to
better the data collection process, to allow for more data
throughput, to optimise the system and the fixing of bugs
that usually stopped the collection process. An other chal-
lenges encountered during this stage was getting familiar
with the data modelling used by Cassandra. The data mod-
els were changed several times before arriving at the stage
with the current version of the tables. This was an on going
and incremental process that led to the project being at the
current stable version, where the system is able to collect
both market and twitter data instantaneously and perform
near real time analytics such as aggregations, repopulate
data sets with the results from the aggregations, expose a
REST API to query the data and a GUI for visualising it.

URI Path Description

/matches/

Retrieves a list of all distinct match tags in the system.

/matches/[tag] /market/

Retrieves market data for a specific match tag.

/matches/[tag]/entities/

Retrieves entities for a specified match tag.

/matches/[tag]/entities/[entity

Retrieves sentiment overview for a specific entity under a specific match tag.

/matches/[tag] /entities/[entity] /minutes/

Retrieves per-minute sentiment data for an entity under a specific match tag.

Table 1: API Endpoint Description

Manchester

Sentiment Reaction for

Figure 6:
United

Taking aside these hindrances, around 35G worth of tweet
and market data is distributed across the Cassandra cluster.

4.2 Results

The main aim of this research is the study of two very dif-
ferent ,yet similar domains, a prediction market and a social
media platform. The study conducted in this research is to
see whether there are any correlations between the two plat-
forms for expressing one’s opinion a particular event hap-
pening at real time and see whether any relationship exist
between them. An other important study is to see how these
two domains react upon arrival of new information.

S. CONCLUSIONS & FUTURE WORK

Social-media and prediction markets are two domains that
in recent years have picked up momentum through the ad-
vancements of Internet technology and high availability sys-
tems. Although these two domains seem very different at
first, they offer the same basic feature to their users; to
express their opinion. In this research, the study of such
relationships between these two domains is tackled by the
use of big data solutions. In the literature study carried
out it is found that such solution stacks are being used for
such tasks and that similar research in this area is also being
conducted. The problem at hand was tackled by the setting
up of a Cassandra cluster made of 3 data nodes and spark
slaves sitting on the same stack for the real time analytics,

building clients for Betfair and Twitter data and also build-
ing a public API for interfacing. This solution is found to be
both viable and practical as the jobs at hand are performed
as requested.

For future development, as part of our original study, is
to perform further analytics and build documents based on
the time of match and the most n-grams used by the twitter
user to try and predict the outcome of the match by what
is being said. Also compare the value to that from betfair
markets.

6. REFERENCES

[1] L. Barbosa and J. Feng. Robust Sentiment Detection
on Twitter from Biased and Noisy Data. Coling,
(August):36-44, 2010.

[2] J. Dean and S. Ghemawat. MapReduce: Simplied Data
Processing on Large Clusters. Proceedings of 6th
Symposium on Operating Systems Design and
Implementation, pages 137-149, 2004.

[3] Laksham Avinash and Prashant Malik. Cassandra: a
decentralized structured storage system. ACM SIGOPS
Operating Systems Review, pages 1-6, 2010.

[4] S. M. Mohammad and P. D. Turney. Crowdsourcing a
Word-Emotion Association Lexicon. Computational
Intelligence, 29(3):436-465, 2013.

[5] Y. Yu and X. Wang. World Cup 2014 in the Twitter
World: A big data analysis of sentiments in U.S. sports
fans’ tweets. Computers in Human Behavior,
48(March):392-400, 2015.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster Computing with Working
Sets. In Proceedings of the 2Nd USENIX Conference on
Hot Topics in Cloud Computing, HotCloud’10, page 10,
Berkeley, CA, USA, 2010. USENIX Association.

